5月AI投资专家交流会:AI+领域标的数理?服务器需求?

本文首发于“君实财经”微信公众号,发布时间:2023-05-08

最新纪要研报请微信扫码关注“君实财经”

每天精选消费、医药、互联网、新能源等最新调研纪要和报告,缩小你与一线产业的信息差!

5月AI投资思路再梳理会议纪要2305

DW传媒互联网&海外首席分析师

投资方向上,大模型环节是股价最大的弹性,也是最大市值的弹性。应用环节投资呈现百花齐放,弹性也非常大,参照海外节奏,2023年国内AI应用应该还会持续突破我们的想象和预期。

1)真正在公司层面、业务层面兑现了逐步被市场认同的公司,像昆仑万维、蓝色光标,万兴科技等TMT投资里有锐度的公司应该成为组合标配,这种持续兑现在引领产业方向。包括光模块,我们认为也有这个特征。

2)AI+游戏。这种影响和改变还处于比较早期的阶段,也就意味着系统性的估值的抬升还是在持续。网易在逆水寒开发中已经加入多项AI技术,实现智能捏脸,包括智能的NPC等,玩法也更加丰富,剧情也更加有趣。米哈游在《崩坏:星穹铁道》里面会加入AI工具开发AINPC等,我们认为快的话可能半年之内我们就能看到这些结合AI技术的游戏。因此,结合这个时点游戏板块的位置,我们认为板块估值还有进一步提升的空间。我们对于游戏的投资,一定要去理解它估值提升的因素,系统性的理解beta,在这个基础之上我们才好更好的把握一些机会。个股:三七互娱前面严重滞涨,在这个位置是一个非常好的选择;恺英网络估值也非常便宜。

3)AI+电商。电商行业市场规模大,玩家多,一旦有变革就会产生很大投资机会。从增量来看,回顾历史,线上零售以其更高的效率抢夺线下份额,AI能给现有电商模式带来进一步的用户体验和效率的改善,我们预计未来线上零售渗透率将因为AI得到进一步提升。从存量的重新分配来看,最先拥抱技术的公司可取得下一轮竞争先机。标的:强调跨境电商机会,跨境电商本身基本面在恢复,财报都非常不错。AI对于跨境电商各环节的赋能,会在各个环节体现,而且在跨境电商层面是更早的体现。包括焦点科技、华凯易佰、吉宏股份。返利科技也可以关注。

4)出版:和训练语义素材相关,另外一方面它是教育相关的应用场景。有些公司有自己的内容生产能力,有些公司只是更多发行,有些公司只有教材,这个也会有些差异。所以我们认为这两个逻辑都有的公司可能会是基本面层面的龙头公司,比如凤凰传媒,其他低估值公司里面,估值也整体非常便宜,对比13-15年的估值,尤其13年估值,出版的主流公司到25-30倍应该是没问题的。所以估值还有比较大的提升空间。龙头公司,像凤凰传媒、中文传媒、中南传媒,另外像低估值,像南方长江中原山东新华文轩中国出版也值得关注。

5)其他个股推荐:分众传媒,基本面在恢复,尤其是Q1非常不错。Q2保持更加乐观一点,五一和六一八都是非常值得期待的。分众的海外业务团队已经将AI应用于日常的工作,国内业务团队也在考虑部署,目前已生成了“江南春”数字分身生成短视频,未来可以借助AI进一步提高生产效率。分众的差异化优势在于流量、数据、经验、渠道,可以将广告营销方法论、正确和错误案例喂给AI,让它帮助员工更好地服务客户,并逐步开放给客户使用。所以它本质上有垂直领域的私有数据的价值。另外像一些黑马,包括像唐德影视、思美传媒,世纪天鸿也可以关注。

综合来讲,整个应用相关机会,依然会是市场上最尖锐的矛,5月份有可能会真正的主升浪,这些龙头标应该是大家标配。游戏我们把三七互娱排到了最前面,还有电商+出版+分众。

DW研究所计算机行业首席

在GPT3.5出现之前,人们对通用人工智能的发展非常悲观,只能通过特定的数据来训练特定功能的AI,如果要拓展其他功能,需要再通过特定数据进行训练,训练好的模型不互通,没有全面的泛化能力。

GPT-3产生了三个重要能力:语言生成、上下文学习、世界知识,这三个重要能力都源于基于海量数据的大模型预训练:在有3000亿单词的语料上预训练拥有1750亿参数的模型。海量数据为基础的大模型训练产生了突现能力(EmergentAbility),带来了AI研究范式的转变。这种突现能力是在模型大小大于100B时才产生的,目前只存在于大模型中。只有在训练数据量足够大时,量变才能引起质变。GPT相比于此前模型所具备的“泛化能力”,或者说具备“常识”的能力,就是以海量数据为基础产生的。算法、算力和数据是AI发展的三大重要基础。展望未来,算法和算力,从当前来看,都可以通过挖掘优质人才、引进优秀工程实践,或者直接购买海外优质资产追赶,而培养中文环境的优质数据集、语料库却必须长期自我积累沉淀,因此,我们认为未来数据将成为AI发展的胜负手或者是差异化的关键,并有望为中国训练自己的大模型,走出差异化道路提供重要基础。

语言包含价值取向,未来想要不被强势文化压缩生存空间,中国必须发展自己的大模型。语言中所包含的价值观必然和训练它的人对齐,虽然模型本身不具备价值观取向,但是训练的语料库所包含的价值观将影响模型的输出结果。在目前的OpenAI语料库中,中文语料只占5%,未来如果想在使用过程中符合中国特有价值取向,不被海外强势文化压缩生存空间,中国就必须发展自己的大模型。

发展自己的大模型需要以国内数据集为重要支撑,而国内缺乏可训练的高质量数据。中文互联网环境下,搜索、视频等数据质量普遍低于海外,很多高价值数据都是公共数据和商业数据,尚未开放,没有成熟的可训练的数据集,未来将会对国内大模型发展产生压力。

而更关键的,是高质量的行业私有数据价值更高。高质量的独特数据也将为国内实现差异化,开发自己的大模型提供有力支撑。

国内更高质量的数据都在政府手中,数据要素市场建设将为国内训练自己的大模型提供坚实基础,未来有望成为国内寻求差异化发展的重要支撑。随着公共数据逐步开放运营,垂直行业数据由严监管向谋发展转变,数据要素市场化发展将使得算法厂商能够获得质量较高的公共和行业数据,提高训练质量和效率,进而为国内开发符合自身发展和价值观的大模型提供支撑。

国家数据局成立,数字经济从严监管向谋发展,产业趋势已经十分明显。我们预计未来数据要素市场化建设将进入全面加速阶段。数据作为生产要素之后,首先要解决的是供给问题。因为要素需要海量供给,首先要做数据的资源化,需要有数据的汇聚,才能形成数据资源。

数据资源化的核心是数字中国规划里面的数字基础设施和数据资源体系。在大模型发生了涌现后,各行业的专用的垂直模型将会是未来最主要的应用场景。垂直模型这就相当于定制,关键在于数据,只有投喂了别人不具备的知识和数据,才能够形成别人不具备的能力,才能创造出适合于某个细分行业的、提升效能效率的专用模型出来。

什么样的数据最强?谁能够拿到国家卫健委、应急管理部、公安部、国土资源局、金融、电信、各地方政府甚至军队的数据?谁就可以基于大模型在应用端获得更大的优势。AI的发展离不开数据作为基础,公共和垂直行业数据敏感性高,需要具备央国企背景的厂商参与。所以我们判断国资云后续将会成为政府用大模型对外输出专用垂直服务能力的主要载体。国资云输出的是一种服务能力,包括了基础设施服务、算力服务、人工智能服务和大数据服务等等。

国资云是自主可控的数字中国底座,是统筹发展和安全的最佳实践。国内公共数据占比60%,发展数据要素和人工智能的底座都是云基础设施,考虑安全问题,公共数据只能上国资云,国资云有望率先落地兑现放量。

投资建议与相关标的:公共和垂直行业数据敏感性高,需要具备央国企背景的厂商参与。我们看好以下三个环节:

1)数据运营:我们预计医保数据将有望成为公共数据放开的第一站,重点推荐久远银海。2)数据基础设施,向外输出专用垂直模型能力。重点推荐深桑达A,易华录,云赛智联。3)数据持有方:具备相关数据的厂商。推荐上海钢联、中远海科等。

DW研究所电子行业首席

电子的角度受益于AI拉动的环节主要分为云端(服务器的数据处理)以及终端(一系列智能硬件的应用)。

首先是率先有变化的服务器端硬件环节:

1)参数规模:历代GPT的参数量呈现指数级增长,GPT-4的参数量是3的20倍,据OpenAI的CEO预测,将在2024年底至2025年发布的GPT-5,其参数量将是GPT-3的100倍,计算量为GPT-3的200-400倍。那么随着用户和应用范围的持续扩大,数据处理的压力增大,将提出庞大的算力需求。

2)AI芯片需求:算力需求的快速增长势必带动高算力AI芯片市场规模的持续扩张。第三方机构报告显示,2027年全球GPU行业市场规模将达1853.1亿美元,五年复合增速33%。同时,我国AI芯片市场规模增速更快,可达42.9%。这里市场增量除了需求量的增长以外还暗含了价格的提升,是量价齐升的逻辑,英伟达GPU芯片迭代从最初3万元到A100的10万左右,以及最新的H100的24万。而从格局来看,GPU作为算力最强的芯片种类,从深度学习和处理海量数据运算能力的角度来看,未来会长期占据80%以上的市场份额,英伟达几乎形成垄断(25年预计保持8成份额),而半定制和全定制化芯片会在特定领域提升效率,占据一定的比例。

3)服务器需求:在此基础上我们率先建立独特的软硬结合的模型测算了AI服务器的硬件需求,以最核心的GPU芯片为例,测算推理需要的服务器数量;按照每天3千万人实时提问的前提假设下,设定单个模型参数下处理用户请求的token字符串所需要的浮点运算次数、模型参数规模、每秒处理token字符串的数量、单台服务器所需GPU数量、浮点运算能力的利用率等,计算出OpenAI当前所需推理服务器数量约为6600台、训练服务器需求量约1100台,在未来模型参数或活跃用户数量指数级提升的前提下,是几十万甚至接近百万量级的需求。由此可见在AI推理下,GPT对服务器拉动需求显著。

所以在数据处理环节,AI芯片及服务器端的相关零组件会是率先受益的领域,市场关注以及投资重点的方向。

按照重要性和产业链环节来梳理:

1)CPU、GPU是服务器最主要的部件,是衡量服务器性能的首要指标。行业龙头集中效应显著,Intel占据服务器CPU市场80%以上的份额,英伟达占据GPU80%以上份额,国内厂商与其技术差距较大,关注重点公司的技术突破进展,代表像寒武纪和海光信息。

2)存储单元方面,内存、硬盘是服务器中其他的重要部件,内存是与CPU进行通信的桥梁,硬盘是服务器数据的仓库。计算机中的所有程序都在内存中执行,服务器的硬盘需要满足速度快和高可靠性,内存和硬盘都对服务器的性能有较大的影响。存储器总体市场空间将超过2000亿美金,呈垄断竞争格局,DRAM市场CR3超90%,目前国内厂商与国外的技术,规模等差距较大,自主产品亟待突破。代表江波龙和澜起科技(内存接口芯片)。

3)电源负责各个模块的供电和电路控制,由电源管理芯片实现。海外占据主导地位,服务器主板CPU/GPU电源管理芯片领域可触及的市场规模达20亿美元,但国内厂商的自给率极低,成长潜力可期。代表公司杰华特(intel供货)和晶丰明源。

4)服务器芯片经由封装形成模块,进入整机组装环节。一方面,全球封测产业正逐步向中国大陆转移,内资企业与外资厂商技术差距持续缩小,中国台湾、中国大陆和美国占据主要市场份额,另一方面为了应对持续提升的算力需求和芯片制程,封测头部厂商均积极布局Chiplet等先进技术。代表公司长电科技、通富微电。

5)服务器其他零部件包括PCB、连接器和结构件等,成本占比低于20%。代表环节PCB在高端服务器中的应用主要包括背板、高层数线卡、HDI卡、GF卡等,其特点主要体现在高层数、高纵横比、高密度及高传输速率,中国大陆PCB产值规模在全球占比均超50%,龙头沪电股份,国际头部客户。另外就是整机集成商,工业富联作为全球服务器代工出货量第一,绑定微软等大客户。

从前到后格局越来越国产化,因此从基本面角度来看国内产业是从后往前依次受益,我们看好沪电股份、工业富联在AI服务器订单和营收方面率先呈现弹性。芯片端虽然短期市场认为落地有难度,但我们结合Q2对于半导体产业的看好,可以重点关注中芯国际这一国内唯一具备先进制程能力的晶圆厂后续对AI服务器芯片流片的落地能力。

其次是终端的应用场景,从电子的角度可以预见到很多传统或新型智能硬件结合AI技术做出的硬件升级,作为交互的载体,安防、教育、2C的手机和智能家居等都会有新的AI赋能应用场景,推动终端硬件不断升级,比如手机的摄像头、安防的AI视频识别、混合现实眼镜对于三维场景的交互等,都是未来AI大趋势下的发展方向,标的更多是消费电子及品牌。

最新纪要研报请微信扫码关注“君实财经”

每天精选消费、医药、互联网、新能源等最新调研纪要和报告,缩小你与一线产业的信息差!

注意:以上内容来源于网络,友情分享,仅是基于行业以及公司基本面的静态分析,非动态买卖指导。股市有风险,入市需谨慎,请勿跟风买卖!如造成不便,请联系后台删除

Related Posts